A Weak-L p Prodi–Serrin Type Regularity Criterion for the Navier–Stokes Equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Osgood Type Regularity Criterion for the 3D Boussinesq Equations

We consider the three-dimensional Boussinesq equations, and obtain an Osgood type regularity criterion in terms of the velocity gradient.

متن کامل

A study on the global regularity for a model of the 3D axisymmetric NavierStokes equations

We investigates the global regularity issue concerning a model equation proposed by Hou and Lei [3] to understand the stabilizing effects of the nonlinear terms in the 3D axisymmetric Navier-Stokes and Euler equations. Two major results are obtained. The first one establishes the global regularity of a generalized version of their model with a fractional Laplacian when the fractional power sati...

متن کامل

A new regularity criterion for weak solutions to the Navier-Stokes equations

In this paper we obtain a new regularity criterion for weak solutions to the 3-D Navier-Stokes equations. We show that if any one component of the velocity field belongs to L([0, T ); L(R)) with 2 α + 3 γ ≤ 1 2 , 6 < γ ≤ ∞, then the weak solution actually is regular and unique. Titre. Un nouveau critère de régularité pour les solutions faibles des équations de Navier-Stokes Resumé. Dans cet art...

متن کامل

On the regularity criterion of weak solution for the 3D viscous Magneto-hydrodynamics equations

Here u, b describe the flow velocity vector and the magnetic field vector respectively, p is a scalar pressure, ν > 0 is the kinematic viscosity, η > 0 is the magnetic diffusivity, while u0 and b0 are the given initial velocity and initial magnetic field with ∇ · u0 = ∇ · b0 = 0. If ν = η = 0, (1.1) is called the ideal MHD equations. As same as the 3D Navier-Stokes equations, the regularity of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Fluid Mechanics

سال: 2014

ISSN: 1422-6928,1422-6952

DOI: 10.1007/s00021-014-0182-5